MATH 5061 Solution to Problem Set 21

1. Prove that the antipodal map A(p) = —p induces an isometry on S™. Use this to introduce a Riemannian
metric on RP" such that the projection map 7 : S® — RP" is a local isometry.

Solution:

Firstly, note that antipodal map A(p) = —p will give an isometry on R"*1L.
That is, let g be the metric on R"*!, then

0 0 0 0

(A g)P(%v %j) = g—p(dAp(aT%)adAp(%j))
0 0
= gfp(—axi ; _87%) = 0ij
0 0

:9"’(871-’@)

So A*g = g. Hence A*(g|sn) = glsn, A will induce an isometry on S™.
Now we have the nature definition of metric § on RP" defined by

gq(v,w) = gp|sn(vo,wo)

where ¢ € RP",p € 77 1(q), vo € dm, ' (v),wo € dm, ' (w). Note that vy, wp is
uniquely determined by v, w since dm, is a isomorphism. We need to verity g is
well-defined.

If p' is another p such that 7(p’) = ¢, then p’ = —p = A(p). Hence
Iplsn (Vo, wo) = ga(p)lsn(dAp(vo),dA,(wp)). Note that dmsy o dA, = m, by
moA=m,sop will give the same definition with p.

By the construction above, we can find 7 is indeed a local isometry since
locally they are diffeomorphism and their metric is related by .

2. Show that the isometry group of S”, with the induced metric from R"*!  is the orthogonal group O(n+1).

Solution:

Let F :={F :S"™ — S"|F is an isometry }. Then we know O(n + 1) C F since
the orthogonal transformation will keep the metric of R**! and hence keep the
metric on S™.

We will show that O(n + 1) = F.

Let ¢ € F be an isometry of S*. Then we construct a new map 1 :
R™1\{0} — R"T1\{0} in the following ways

W(x) = |af w(%),w e R™1\{0}.

One can verify this is a diffeomorphism. Moreover, we can calculate the
differential map at = with direction v as following, (e.g. calculating & |,—ot(c(t))
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with ¢(0) =z, (0) = v)

z\ d d T+t
dipe(v) = | — ) == t —ltmop [ ————
Ve (v) 90<|m|> dt't oz + tu| + || dtlt 0¢(m+tv|)

() (@ . (v (x,v)x
Lﬁ¢<ﬂ>HWZ<m n3>

where (-, -) is the inner product on R"*! (Or the standard metric on Euclidean
space)
Use the fact ¢ is an isometry, i.e. (d¢,(v),d¢p(w)) = (v,w), and then fact

‘P(f;j)J_ Im (dgb%) , ‘cp(li—l)‘ =1, we find

<dw$(v),d¢x(w)>:<m><%w>+|x|z<v (z,0)z w <x,w>gj>

ol’ ol af® il

= (v,w).

So we get ¢ : R**1\{0} — R"*1\{0} is an isometry. Now we can use the
properties of Euclidean space to show ) is indeed a linear map.

Since 1 is an isometry, it keeps the distance of different points. That is,
if p,g € R"™1\{0}, such that the line segment pg doesn’t contain 0, then
[¥(p) —¥(q)] = |p—q|. If the line segment pg contains 0, since v is contin-
uous, we still have the same result since we can choose ¢; — ¢ such that pg;
does not contain 0 and take limit in [¢)(p) — ¥(q¢:)| = |p — ¢l

Again, by the definition of 1, we know 1 keeps the length of points. That is

p
501 = b o 2| = 1.
pl
Hence 1 keeps the inner product by the following

W), vla) = 5 (W@ + 0@ ~ k) —w@) = 5 (o + 1 - I~ o)
P, )

for any p,q € R"*1\{0}.
So for any a,b € R, p,q,r € R"1\{0}, we have

(¥(ap + bg) — ayp(p) — bp(q),¥(r)) = (ap + bg,7) —a(p,r) —b{g,r) =0

Note that 1 (r) can take any vectors in S™, by choose ¥ (r) = e, - ,en41 to be
the basis of R"*!, we actually know

Y(ap +bq) = ayp(p) + by(q).

Hence if we define 1(0) = 0, we actually get ¢ : R"™1 — R+ is a linear
map. It is an orthogonal map since ¥ also keeps the length of any line segments
of R+,

So as a restriction of v, the map ¢ is an orthogonal transformation on S"™.



3. For any smooth curve ¢ : I — M and t9,t € I, we denote the parallel transport map as P = P, ¢ :
Toto)M — Ty M along c from c(to) to c(t).

(a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.

(b) Let X,Y be vector fields on M, p € M. Suppose ¢: I — M is an integral curve of X with ¢(tg) = p.

Prove that J
(VxY)p) = o P (Y (c(1)):

t=to

Solution:



(a). Let write a new curve &(s) = ¢(t + tg — s) from ¢(t) to c(tg) for s € [to, t].
So we can define the new map P = Pety : TeiyM — Tepg) M.

Note P,P are all homomorphism since for constant a,b, we always have
Vx(aY +bZ) =aVxY +bVxZ.

Let’s show P o P = Idr,, ,m. This is because, for any V(c(t)), the parallel
transportation of V' € T, M along c, we consider the vector fields V(c(s)) =
V(é(t +to — s)), we have

VE/(S)V - V,C/(S)V - 0

~ Hence V(&(t + to — s)) is a parallel transport from V'(c(t)) along ¢. Hence
P(V(c(t))) = V(c(to)). That's Po P(V(c(to))) = V(c(t)).

Similarly, we know P o P =Idr,, M. Hence P is an isomorphism.

For the linear isometry, Let V, W be two vectors fields that are all paralleled
along c. Since the metric is compatible with connection, we have

d

79V (), W(s)) = g(Vers)V(s), W(s)) + 9(V(s), Ver(y W(0))

=9(0,W(s)) +9(V(s),0)) =0

Integrate s from ¢ to ¢, we have g(V (t), W(t)) = g(V (to), W(to)).

If M is orientable, we consider the Py = P4, s for any s € [to,t]. Let’s
choose an orientable basis e, - - - e, € T ;)M and let e;(s) = Ps(e;), the parallel
transport of e; along c.

Let’s consider the function f(s) : [to,t] — {—1,1} where f(s) = 1 if and
only if P; is orientation-preserving.

Clearly f(s) is continuous since in any oriented local coordinate chart z1, - - , =,
we write e; = Z?Zl aija%j’ then orientation of e;(s) is determined by the sign
of det(a;;(s)), which is continuous with respect to s.

Since f(tg) = 1, we get f(s) = 1 for all s € [to,t]. So P is orientation
preserving.

(b).

As before, we choose e1,--- , e, as the basis of T, )M, and let e;(c(t)) be
the parallel transformation along ¢(t) from the vectors e;. Since e;(c(t)) is the
basis of T,y M by the isomorphism of P, we can write Y (c(t)) = a;(t)e;(c(t)).
Hence

Here ¢/(0)(a;(t)) means the vector ¢/(0) acting on the function a;(t).



On the other hand, use the fact that chtt,t is a linear map, we have

el —1

d
dt Pc,to,t(Y<c(t)))

n

Hence (VxY)(p) = -}

S lims P (Y ()



4. Prove the second Bianchi identity: for any vector fields X,Y, Z, W, T € I'(TM),

(VxR)(Y,Z,W.T) + (VyR)(Z, X, W,T) + (VzR)(X,Y,W,T) = 0.

Solution:

We use the normal coordinate to compute the second Bianchi Identity. Choose
p € M with the normal coordinate eq,--- ,e, at p. So we have V.,e; =0 at p
for any 1 <,j <n and hence [e;, e;] =0 at p.

So at p, the coderivative of Riemann curvature tensor can be written as

(Ve,R) (e, ks €1, m) = ;Z_R(ej,ek,el,em)
= —(Ve,Ve, Vet em) +(Ve, Ve, Ve, exem)
So
(Ve R)(ej, exs €1, em) + (Ve R)(€ks €1, €1,em) + (Ve R)(eis €5, €1, €m)
= —|{Ve,Ve,Vererem) |+ (Ve, Ve, Ve, €1, €m)

- <ve-vek Veiela em> + <Vej Veivekela em>

J

- <vekveivej €, em> + <vekvej veielv 6m>

= R(ei, €5, Veyer, em) + Riej, ek, Ve, €1, em) + R(ek, €i, Ve e, em)
=0 (Vee; =0forl<i,j<nandR is a tensor. )

Since the coderivative of R is still a tensor, then by the linearity of R, we
have

(VxR)(Y, Z,W,T) + (VyR)(Z, X, W,T) + (VzR)(X,Y,W,T) = 0



