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1. Prove that the antipodal map A(p) = −p induces an isometry on Sn. Use this to introduce a Riemannian
metric on RPn such that the projection map π : Sn → RPn is a local isometry.

Solution:
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Problem 1
Firstly, note that antipodal map A(p) = �p will give an isometry on Rn+1.
That is, let g be the metric on Rn+1, then

(A⇤g)p(
@

@xi
,
@

@xj
) = g�p(dAp(

@

@xi
), dAp(

@

@xj
))

= g�p(�
@

@xi
,� @

@xj
) = �ij

= g�p(
@

@xi
,
@

@xj
)

So A⇤g = g. Hence A⇤(g|Sn) = g|Sn , A will induce an isometry on Sn.
Now we have the nature definition of metric g̃ on RPn defined by

g̃q(v, w) = gp|Sn(v0, w0)

where q 2 RPn, p 2 ⇡�1(q), v0 2 d⇡�1
p (v), w0 2 d⇡�1

p (w). Note that v0, w0 is
uniquely determined by v, w since d⇡p is a isomorphism. We need to verity g̃ is
well-defined.

If p0 is another p such that ⇡(p0) = q, then p0 = �p = A(p). Hence
gp|Sn(v0, w0) = gA(p)|Sn(dAp(v0), dAp(w0)). Note that d⇡A(p) � dAp = ⇡p by
⇡ � A = ⇡, so p0 will give the same definition with p.

By the construction above, we can find ⇡ is indeed a local isometry since
locally they are diffeomorphism and their metric is related by ⇡.

Problem 2
Let F := {F : Sn ! Sn|F is an isometry }. Then we know O(n + 1) ⇢ F since
the orthogonal transformation will keep the metric of Rn+1 and hence keep the
metric on Sn.

We will show that O(n + 1) = F .
Let ' 2 F be an isometry of Sn. Then we construct a new map  :

Rn+1\{0} ! Rn+1\{0} in the following ways

 (x) = |x|'(
x

|x| ), x 2 Rn+1\{0}.

One can verify this is a diffeomorphism. Moreover, we can calculate the
differential map at x with direction v as following, (e.g. calculating d

dt |t=0 (c(t))
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2. Show that the isometry group of Sn, with the induced metric from Rn+1, is the orthogonal group O(n+1).
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with c(0) = x, c0(0) = v)

d x(v) = '

✓
x

|x|

◆
d
dt

|t=0 |x + tv| + |x| d
dt

|t=0'

✓
x + tv

|x + tv|

◆

=
hx, vi
|x|2

'

✓
x

|x|

◆
+ |x| d' x

|x|

 
v

|x| �
hx, vix

|x|3

!

where h·, ·i is the inner product on Rn+1 (Or the standard metric on Euclidean
space)

Use the fact ' is an isometry, i.e. hd�p(v), d�p(w)i = hv, wi, and then fact
'( x

|x| )? Im
⇣
d� x

|x|

⌘
,
���'( x

|x| )
��� = 1, we find

hd x(v), d x(w)i =
hx, vi hx, wi

|x|4
+ |x|2

*
v

|x| �
hx, vix

|x|3
,

w

|x| �
hx, wix

|x|3

+

= hv, wi .

So we get  : Rn+1\{0} ! Rn+1\{0} is an isometry. Now we can use the
properties of Euclidean space to show  is indeed a linear map.

Since  is an isometry, it keeps the distance of different points. That is,
if p, q 2 Rn+1\{0}, such that the line segment pq doesn’t contain 0, then
| (p) �  (q)| = |p � q|. If the line segment pq contains 0, since  is contin-
uous, we still have the same result since we can choose qi ! q such that pqi

does not contain 0 and take limit in | (p) �  (qi)| = |p � qi|.
Again, by the definition of  , we know  keeps the length of points. That is

| (p)| = |p|
����'(

p

|p| )
���� = |p| .

Hence  keeps the inner product by the following

h (p), (q)i =
1

2

⇣
| (p)|2 + | (q)|2 � | (p) �  (q)|2

⌘
=

1

2

⇣
|p|2 + |q|2 � |p � q|2

⌘

= hp, qi

for any p, q 2 Rn+1\{0}.
So for any a, b 2 R, p, q, r 2 Rn+1\{0}, we have

h (ap + bq) � a (p) � b (q), (r)i = hap + bq, ri � a hp, ri � b hq, ri = 0

Note that  (r) can take any vectors in Sn, by choose  (r) = e1, · · · , en+1 to be
the basis of Rn+1, we actually know

 (ap + bq) = a (p) + b (q).

Hence if we define  (0) = 0, we actually get  : Rn+1 ! Rn+1 is a linear
map. It is an orthogonal map since  also keeps the length of any line segments
of Rn+1.

So as a restriction of  , the map ' is an orthogonal transformation on Sn.
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3. For any smooth curve c : I → M and t0, t ∈ I, we denote the parallel transport map as P = Pc,t0,t :
Tc(t0)M → Tc(t)M along c from c(t0) to c(t).

(a) Show that P is a linear isometry. Moreover, if M is oriented, then P is also orientation-preserving.

(b) Let X,Y be vector fields on M , p ∈ M . Suppose c : I → M is an integral curve of X with c(t0) = p.
Prove that

(∇XY )(p) =
d

dt

∣∣∣∣
t=t0

P−1
c,t0,t(Y (c(t))).

Solution:
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Problem 3
(a). Let write a new curve c̃(s) = c(t + t0 � s) from c(t) to c(t0) for s 2 [t0, t].
So we can define the new map P̃ = Pc̃,t,t0 : Tc(t)M ! Tc(t0)M .

Note P, P̃ are all homomorphism since for constant a, b, we always have
rX(aY + bZ) = arXY + brXZ.

Let’s show P̃ � P = IdTc(t0)M . This is because, for any V (c(t)), the parallel
transportation of V 2 Tc(t0)M along c, we consider the vector fields V (c(s)) =
V (c̃(t + t0 � s)), we have

rc̃0(s)V = r�c0(s)V = 0

Hence V (c̃(t + t0 � s)) is a parallel transport from V (c(t)) along c̃. Hence
P̃ (V (c(t))) = V (c(t0)). That’s P̃ � P (V (c(t0))) = V (c(t0)).

Similarly, we know P � P̃ = IdTc(t)
M . Hence P is an isomorphism.

For the linear isometry, Let V, W be two vectors fields that are all paralleled
along c. Since the metric is compatible with connection, we have

d
dt

g(V (s), W (s)) = g(rc0(s)V (s), W (s)) + g(V (s),rc0(s)W (0))

= g(0, W (s)) + g(V (s), 0)) = 0

Integrate s from t0 to t, we have g(V (t), W (t)) = g(V (t0), W (t0)).
If M is orientable, we consider the Ps = Pc,t0,s for any s 2 [t0, t]. Let’s

choose an orientable basis e1, · · · en 2 Tc(t0)M and let ei(s) = Ps(ei), the parallel
transport of ei along c.

Let’s consider the function f(s) : [t0, t] ! {�1, 1} where f(s) = 1 if and
only if Ps is orientation-preserving.

Clearly f(s) is continuous since in any oriented local coordinate chart x1, · · · , xn,
we write ei =

Pn
j=1 aij

@
@xj

, then orientation of ei(s) is determined by the sign
of det(aij(s)), which is continuous with respect to s.

Since f(t0) = 1, we get f(s) = 1 for all s 2 [t0, t]. So P is orientation
preserving.
(b).

As before, we choose e1, · · · , en as the basis of Tc(t0)M , and let ei(c(t)) be
the parallel transformation along c(t) from the vectors ei. Since ei(c(t)) is the
basis of Tc(t)M by the isomorphism of P , we can write Y (c(t)) = ai(t)ei(c(t)).
Hence

rXY (p) =
nX

i=1

rc0(0)(ai(t)ei(c(t)))|t=t0 =
nX

i=1

c0(0)(ai(t))ei(p) + ai(0)rc0(0)ei(p)

=
nX

i=0

a0
i(0)ei(p)

Here c0(0)(ai(t)) means the vector c0(0) acting on the function ai(t).
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On the other hand, use the fact that P�1
c,t0,t is a linear map, we have

d
dt

����
t=t0

P�1
c,t0,t(Y (c(t))) =

d
dt

����
t=t0

nX

i=1

ai(t)P
�1
c,t0,t(ei(c(t)))

=
d
dt

����
t=t0

nX

i=1

ai(t)ei(c(t0))

=
nX

i=0

a0
i(0)ei(p)

Hence (rXY )(p) = d
dt

��
t=t0

P�1
c,t0,t(Y (c(t))).

Problem 4
(a). Let work at the local coordinate (x1, · · · , xn) near p. Then TM has the
local coordinate (x1, · · · , xn, y1, · · · , yn) near (p, v) defined by

(p, v) = ((p1, · · · , pn), (v1
@

@x1
, · · · , vn

@

@xn
)) ! (p1, · · · , pn, v1, · · · , vn)

So for ↵(t), if v(t) = v1(t)
@

@x1
+ · · · + vn(t) @

@xn
, p(t) = (p1(t), · · · pn(t)), then

↵(t) can be represented by (p1, · · · , pn, v1, · · · , vn). Hence ↵0(t) = p01(t)
@

@x1
+

· · · + p0n(t) @
@xn

+ v01(t)
@

@y1
+ · · · + v0n(t) @

@yn
. So we know that p0i(0) and v0i(0) are

uniquely determined by V .
Note that ⇡ has the form (x1, · · · , xn, y1, · · · , yn) ! (x1, · · · , xn) under our

local coordinates, so d⇡(↵0(0)) = p01(0) @
@x1

+ · · · p0n(0) @
@xn

. Hence d⇡(V ) =
d⇡(↵0(0)) will be determined by V , which does not rely on the choice of curve
(p(t), v(t)).

For the second part, we have

Dv

dt
(0) = rp0(0)v(t) =

nX

i=1

v0i(0)
@

@xi
+ vi(0)rp0(0)

@

@xi

Since v0i(0) is uniquely determined by V , vi(0) is uniquely determined by v,
p0(0) = ⇡(V ) is uniquely determined by V , we know Dv

dt (0) does not rely on the
choice of curves.

Hence all of the terms in the definition of hV, W i(p,v) doesn’t rely on the
choice of curves and hence it indeed give us a Riemannian metric on TM .

Moreover, we have the description of inner product on TM as following.
If V = (p̃, ṽ) = (p̃1, · · · , p̃n, ṽ1, · · · , ṽn), W = (q̃, w̃) = (q̃1, · · · , q̃n, w̃1, · · · , w̃n)
2 T(p,v)TM , we have

hV, W ip,v = hp̃, q̃ip +

*
ṽ +

nX

i,j,k=1

vip̃j�
k
ij

@

@xk
, w̃ +

nX

i,j,k=1

wiq̃j�
k
ij

@

@xk

+

p

where ṽ means the canonical projection when viewed it as a vector
Pn

i=1 ṽi
@

@xi

in TM .
(b). A vector (p, v) = (p1, · · · , pn, v1, · · · , vn) is in the fiber ⇡�1(p) if the
projection d⇡(p, v) = 0. This means the vectors in the fiber ⇡�1(p) is spanned
by all the vector having form (0, v) for v 2 TpM .
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4. Prove the second Bianchi identity : for any vector fields X,Y, Z,W, T ∈ Γ(TM),

(∇XR)(Y,Z,W, T ) + (∇Y R)(Z,X,W, T ) + (∇ZR)(X,Y,W, T ) = 0.

Solution:

MATH 5061 Riemannian Geometry

Solution to Problem Set 4

Problem 1
We use the normal coordinate to compute the second Bianchi Identity. Choose
p 2 M with the normal coordinate e1, · · · , en at p. So we have rei

ej = 0 at p
for any 1  i, j  n and hence [ei, ej ] = 0 at p.

So at p, the coderivative of Riemann curvature tensor can be written as

(rei
R)(ej , ek, el, em) =

@

@xi
R(ej , ek, el, em)

= �
⌦
reirejrek

el, em

↵
+

⌦
reirek

rej e�em

↵

So

(rei
R)(ej , ek, el, em) + (rej

R)(ek, ei, el, em) + (rek
R)(ei, ej , el, em)

= �
⌦
reirejrek

el, em

↵
+
⌦
rei

rek
rej

el, em

↵

�
⌦
rej

rek
rei

el, em

↵
+

⌦
rej

rei
rek

el, em

↵

�
⌦
rek

reirej el, em

↵
+

⌦
rek

rejreiel, em

↵

= R(ei, ej ,rek
el, em) + R(ej , ek,rei

el, em) + R(ek, ei,rej
el, em)

= 0 (rei
ej = 0 for 1  i, j  n and R is a tensor. )

Since the coderivative of R is still a tensor, then by the linearity of R, we
have

(rXR)(Y, Z, W, T ) + (rY R)(Z, X, W, T ) + (rZR)(X,Y, W, T ) = 0

Problem 2
Recall the corollary in the lecture. It says sectional curvature K(�) ⌘ c for all
� 2 TpM if and only if R(X, Y, Z,W ) = c (hX, Zi hY, W i � hY, Zi hX, W i). So
we have

Rp(X, Y, Z,W ) = f(p) (hX, Zi hY, W i � hY, Zi hX, W i)

Again, we can work at normal coordinate. Let e1, · · · , en to be the normal
coordinate at p. Use the properties @

@xi hej , eki = 0 at p for any 1  i, j, k  n,
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